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Chapter 1: Introduction 

1 Introduction 

Twelf is the current version of a succession of implementations of the logical framework LF. 
Previous systems include Elf (which provided type reconstruction and the operational semantics 
reimplemented in Twelf) and MLF (which implemented module-level constructs loosely based on 
the signatures and functors of ML still missing from Twelf). 

Twelf should be understood as research software. This means comments, suggestions, and 
bug reports are extremely welcome, but there are no guarantees regarding response times. The 
same remark applies to these notes which constitute the only documentation on the present Twelf 
implementation. 

For current information including download instructions, publications, and mailing list, see the 
Twelf home page at http: //www. cs. emu. edu/"twelf/. 

Below we state the typographic conventions in this manual. 

code for Twelf or ML code 

"samp' for characters and small code fragments 

metav&r for placeholders in code 

keyboard for input in verbatim examples 

KEY for keystrokes 

math for mathematical expressions 

emph for emphasized phrases 

File names for examples given in this guide are relative to the main directory of the Twelf in- 
stallation. For example 'examples/guide/nd.elf may be found in 
Vusr/local/twelf/examples/guide/nd.elf if Twelf was installed into the '/usr/local/'direc- 
tory. 

1.1 New Features 

While the underlying type theory has not changed, the Twelf implementation differs from older 
Elf implementation in a few ways. Mostly, these are simplifications and improvements. The main 
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feature which has not yet been ported is the Elf server interface to Emacs. Also, while the type 
checker is more efficient now, the operational semantics does not yet incorporate some of the 
optimizations of the older Elf implementations and is therefore slower. 

Syntax (see Chapter 3 [Syntax], page 7) 
The quote "' character is no longer a special character in the lexer, and '=' (equality) 
is now a reserved identifier. The syntax of '/name declarations has changed by allowing 
only one preferred name to be specified. Also, '/.name, '/infix, '/prefix and '/postfix 
declarations must be terminated by a period '.' which previously was optional. Further, 
single lines comments now must start with "/wintespace' or "/'/' in order to avoid 
misspelled keywords of the form "/.keyword1 to be ignored. 

Type theory 

Elf 1.5 had two experimental features which are not available in Twelf: polymorphism 
and the classification of type as a type. 

Definitions (see Section 3.3 [Definitions], page 9) 
Twelf offers definitions which were not available in Elf. 

Searching for definitions (see Section 5.2 [Solve Declaration], page 20) 
Elf had a special top-level query form sigma [x:A] B which searched for a solution M 
: A and then solved the result of subsituting M for x in B. In Twelf this mechanism 
has been replaced by a declaration '/solve c : A which searches for a solution M : A 
and then defines c = M : A, where the remaining free variables are implicitly universally 
quantified. 

Query declarations (see Section 5.1 [Query Declaration], page 19) 

Twelf allows queries in ordinary Elf files as "/query' declarations. Queries are specified 
with an expected number of solutions, and the number of solutions to search for, which 
can be used to test implementations. 

Operational semantics (see Section 5.5 [Operational Semantics], page 23) 
Twelf eliminates the distinction between static and dynamic signatures. Instead, de- 
pendent function types {x:A> B where x occurs in the normal form of B are treated 
statically, while non-dependent function type A -> B or B <- A or {x:A} B where x does 
not occur in B are treated dynamically. 

Modes (see Chapter 6 [Modes], page 27) 

Twelf offers a mode checker which was only partially supported in Elf. 

Termination (see Chapter 7 [Termination], page 31) 

Twelf offers a termination checker which can verify that certain programs represent 
decision procedures. 
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Theorem prover (see Chapter 8 [Theorem Prover], page 39) 

Although very limited at present, an experimental prover for theorems and meta- 
theorems (that is, properties of signatures) is now available. It does not yet support 
lemmas or meta-hypothetical reasoning, which are currently under development. 

Emacs interface (see Chapter 11 [Emacs Interface], page 55) 
The Elf mode has remained basically unchanged, but the Elf server interface has not 
yet been ported. 

1.2 Quick Start 

Assuming you are running on a Unix system with SML of New Jersey already installed (see 
Chapter 12 [Installation], page 65) you can build Twelf as follows. Here "/,' is assumed to be the 
shell prompt. You may need to edit the file 'Makefile' to give the proper location for sml-cm. 

*/, gunzip twelf-1-2.tar.gz 
'/. tar -xf twelf-1-2.tar 
'/, cd twelf 
'/, make 
'/, bin/twelf-server 
Twelf  1.2,  Aug 27  1998 
•/.'/. OK •/.'/. 

You can now load the examples used in this guide and pose an example query as shown below. 
The prompt from the Twelf top-level is '?-'. To drop from the Twelf top-level to the ML top-level, 
type C-c (CTRL c). To exit the Twelf server you may issue the quit command or type C-d (CTRL 
c). 

Config.read examples/guide/sources.cfg 
Config.load 
top 
?- of  (lam  [x]  x)  T. 
Solving... 
T = arrow Tl Tl. 
More? y 
No more solutions 
?- C-c 
interrupt 
y.y. OK y,y. 
quit 
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2 Lexical Conventions 

Lexical analysis of Twelf has purposely been kept simple, with few reserved characters and 
identifiers. As a result one may need to use more whitespace to separate identifiers than in other 
languages. For example, 'A->B' or 'A+B' are single identifiers, while 'A -> B' and 'A + B' both consist 
of 3 identifiers. 

During parsing, identifiers are resolved as reserved identifiers, constants, bound variables, or 
free variables, following the usual rules of static scoping in lambda-calculi. 

2.1 Reserved Characters 

The following table lists the reserved characters in Twelf. 

:' colon, constant declaration or ascription 

.' period, terminates declarations 

(' ')' parentheses, for grouping terms 

[' ']' brackets, for lambda abstraction 

{' '}' braces, for quantification (dependent function types) 

wiiitespace 

separates identifiers; one of space, newline, tab, carriage return, vertical tab or formfeed 

"/.' introduces comments or special keyword declarations 

"/.wMtespace' T/.' 

comment terminated by the end of the line, may contain any characters 

"/.{' '}'/.'      delimited comment, nested "/,{' and '}'/,' must match 

"Lkeyword'' 

various declarations 

"/,.' end of input stream 

"" doublequote, disallowed 

other printing characters 
identifier constituents 
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2.2 Identifiers 

All printing characters that are not reserved can be included in identifiers, which are separated 
by whitespace or reserved characters. In particular, A->B is an identifier, whereas A -> B stands for 
the type of functions from A to B. 

An uppercase identifier is one which begins with an underscore '_' or a letter in the range 'A' 
through "Z". A lowercase identifier begins with any other character except a reserved one. Numbers 
also count as lowercase identifiers and are not interpreted specially. Free variables in a declaration 

must be uppercase, bound variables and constants may be either uppercase or lowercase identifiers. 

There are also four reserved identifiers with a predefined meaning which cannot be changed. 
Keep in mind that these can be constituents of other identifers which are not interpreted specially. 

->' function type 

<-' reverse function type 

_' hole, to be filled by term reconstruction 

=' definition 

type' the kind type 

Constants have static scope, which means that they can be shadowed by subsequent declarations. 
A shadowed identifier (which can no longer be referred to in input) is printed as 7,id'/,. The printer 
for terms renames bound variables so they do not shadow constants. 

Free uppercase identifiers in declarations represent schematic variables. In order to distinguish 
them from other kinds of variables and constants they are printed as ''id' (backquote, followed by 
the identifer name) in error messages. 
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3 Syntax 

In LF, deductive systems are represented by signatures consisting of constant declarations. Twelf 
implements declarations in a straightforward way and generalizes signatures by also allowing defi- 
nitions, which are semantically transparent. Twelf currently does not have module-level constructs 
so that, for example, signatures cannot be named. Instead, multiple signatures can be manipulated 
in the programming environment using configurations (see Section 9.1 [Configurations], page 45). 

The LF type theory which underlies LF is stratified into three levels: objects M and JV, types 
A and B. and kinds K. Twelf does not syntactically distinguish these levels and simply uses one 
syntactic category of term. Similarly, object-level constants c and type-level constants a as well as 
variables share one name space of identifiers. 

In explanations and examples we will use letters following the mathematical conventions above 
to clarify the roles of various terms. We also use U and V to stand for arbitrary terms. 

3.1  Grammar 

The grammar below defines the non-terminals sig, decl, term and uses the terminal id which 
stands for identifers (see Section 2.2 [Identifiers], page 6). The comments show the meaning in LF. 
There are various special declarations '/.keyword such as */,inf ix or '/.theorem which are omitted 
here and detailed in the appropriate sections. 

sig 

decl 

I decl sig 

= id : term. 
id : term = term, 
id = term. 
_ : term = term. 
_ = term, 
'/.infix ixdecl. 
'/.prefix pxdecl. 
'/.postfix pxdecl. 
'/.name id id. 
'/.query qdecl. 
'/.solve id : term, 
'/.mode mdecl. 
'/.terminates tdecl. 
'/theorem thdecl. 
'/.prove pdecl. 

'/, Empty signature 
•/, Constant declaration 

'/, a   :  K  or  c  :  A 
'/. d :  A =  M 
'/. d =  M 
'/, anonymous definition, for type-checking 
'/, anonymous definition, for type-checking 
'/, operator declaration 
'/, operator declaration 
'/, operator declaration 
'/, name preference declaration 
*/, query declaration 
'/, solve declaration 
'/, mode declaration 
'/, termination declaration 
'/, theorem declaration 
'/, prove declaration 
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term ::= type 
id 
term -> term 
term <- term 
{id : term} term 
[id : term] term 
term term 
term : term 

{id} term 
[id] term 

'/. type 
'/, variable x or constant a or c 
'/. A -> B 
'/. A <- B, same as B -> A 
'I, Pi x : A. K  or  Pi x : A. B 
'/, lambda x : A. B  or  lambda x : A. M 
'/. A M  or  M N 
'/, explicit type ascription 
'/, hole, to be filled by term reconstruction 
•/, same as {id:_} term 
•/, same as [id:_] term 

The constructs {x :U} V and [x :U] V bind the identifier x in V, which may shadow other constants 

or bound variables. As usual in type theory, U -> V is treated as an abbreviation for {x:U} V where 

x does not appear in V. However, there is a subtlety in that the latter allows an implicit argument 

(see Section 4.2 [Implicit Arguments], page 14) to depend on x while the former does not. 

In the order of precedence, we disambiguate the syntax as follows: 

1. Juxtaposition (application) is left associative and has highest precedence. 

2. User declared infix, prefix, or postfix operators (see below). 

3. '->' is right and '<-' left associative with equal precedence. 

4. ':' is left associative. 

5. '{}' and ' [] ' are weak prefix operators. 

For example, the following are parsed identically: 

d  :  a <- b <- {x} c x -> p x. 
d  :   ({x} c x -> p x)  -> b -> a. 
d  :   ((a <- b)  <-  ({x:_}  ((c x)  ->  (p x)))). 

3.2 Constructor Declaration 

New type families or object constructors can be introduced with 

condec  ::= id  :  term. '/, a  :  K or c : A 

Here a stands for a type family and K for its kind, whereas c is an objects constructor and A its 

type. Identifiers are resolved as follows: 
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1. Any identifier x may be bound by the innermost enclosing binder for x of the form {x:A> or 
Cx:A]. 

2. Any identifer which is not explicitly bound may be a declared or defined constant. 

3. Any uppercase identifier, that is, identifier starting with '_' (underscore) or an upper case 
letter, may be a free variable. Free variables are interpreted universally and their type is 
inferred from their occurrences (see Chapter 4 [Term Reconstruction], page 13). 

4. Any other undeclared identifier is flagged as an error. 

3.3 Definitions 

Twelf supports notational definitions, currently employing a restriction to allow a simple and 
efficient internal treatment. Semantically, definitions are completely transparent, that is, both for 
type checking and the operational semantics definitions may be expanded. 

defn  ::= id  :  term = term.       '/, d :  A =  M 
I   id = term. 7, d = M 

where the second is equivalent to id : _ = term. Definitions can only be made on the level of 
objects, not at the level of type families because the interaction of such definitions with logic 
programming search has not been fully investigated. 

In order to avoid always expanding definitions, Twelf currently only permits strict definitions 
(see Section 4.4 [Strict Definitions], page 16). A definition of a constant c is strict if all arguments 
to c (implicit or explicit) have at least one strict occurrence (see Section 4.3 [Strict Occurrences], 
page 15) in the right-hand side of the definition, and the right-hand side contains at least one 
constant. In practice, most notational definitions are strict. For some examples, see Section 3.6 
[Sample Signature], page 11 and Section 4.4 [Strict Definitions], page 16. 

The power of definitions in Twelf, however, is severely limited by the lack of recursion. It should 
only be thought of as notational definition, not as a computational mechanism. Complex operations 
need to be defined as logic programs, taking advantage of the operational semantics assigned to 
signatures (see Chapter 5 [Logic Programming], page 19). 

3.4 Operator Declaration 

The user may declare constants to be infix, prefix, or postfix operators.  Operator precedence 
properties are associated with constants, which must therefore already have been declared with a 
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type or kind and a possible definition.  It is illegal to shadow an infix, prefix, or postfix operator 

with a bound variable. We use nat for the terminal natural numbers. 

assoc ::= none '/, not associative 
I left '/, left associative 
I   right    '/, right associative 

prec  : := nat '/. 0 <= prec < 10000 

ixdecl   ::= assoc prec id 

pxdecl   ::= prec id 

decl   ::= ... 
I '/.infix ixdecl. 
I '/.pref ix pxdecl. 
I '/.postfix pxdecl. 

During parsing, ambiguous successive operators of identical precedence such as a <- b -> c are 
flagged as errors. Note that it is not possible to declare an operator with equal or higher precedence 
than juxtaposition or equal or lower precedence than '->' and '<-'. 

3.5 Name Preferences 

During printing, Twelf frequently has to assign names to anonymous variables. In order to 
improve readability, the user can declare a name preference for anonymous variables based on their 
type. Thus name preferences are declared for type family constants. Note that name preferences 
are not used to disambiguate the types of identifiers during parsing. 

decl   ::= ... 
I  '/.name id id. 

Following our same conventions, a name preference declaration has the form '/.name a id, that 
is, the first identifier must be a type family already declared and the second is the name preference 
for variables of type a. The second identifier must be uppercase, that is, start with a letter from 
'A' through 'Z' or an underscore '_'. Anonymous variables will then be named idl, id2, etc. 
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3.6 Sample Signature 

Below is a signature for intuitionistic first-order logic over an unspecified domain of individuals 
and atomic propositions. It illustrates constant declarations and definitions and the use of operator 

precedence and name preference declarations. It may be found in the file 'examples/guide/nd. elf. 

•/.•/.'/, Individuals 
i : type. 

'/.'/.'/,  Propositions 
o : type. 

imp : o -> o -> o. 
and : o -> o -> o. 
true : o. 
or : o -> o -> o. 
false : o. 
forall : (i -> o) -> o. 
exists : (i -> o) -> o. 

'/.name i T 

'/name o A 

'/.infix right 10 imp 
'/.infix right 11 and 

'/.infix right 11 or 

not   :  o -> o =   [A:o]  A imp false. 

'/.'/,'/. Natural Deductions 

nd o -> type. '/.name nd D 

(nd A -> nd B) -> nd (A imp B) 
nd (A imp B) -> nd A -> nd B. 
nd A -> nd B -> nd (A and B). 
nd (A and B) -> nd A. 
nd (A and B) -> nd B. 
nd (true). 

-> nd C) -> (nd B -> nd C) -> nd C. 

impi 
impe 
andi 
andel 
ande2 
trüei 
'/, no truee 
oril   : nd A -> nd (A or B). 
ori2   : nd B -> nd (A or B). 
ore    : nd (A or B) -> (nd A 
'/, no falsei 
falsee  : nd false -> nd C. 
foralli : ({x:i} nd (A x)) -> nd (forall A). 
foralle : nd (forall A) -> {T:i} nd (A T). 
existsi : {T:i} nd (A T) -> nd (exists A). 
existse : nd (exists A) -> ({x:i} nd (A x) -> nd C) 

noti : (nd A -> nd false) -> nd (not A) 
= [D:nd A -> nd false] impi D. 

note : nd (not A) -> nd A -> nd false 
= [D:nd (not A)] [E:nd A] impe D E. 

-> nd C. 
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4 Term Reconstruction 

Representations of deductions in LF typically contain a lot of redundant information. In order 
to make LF practical, Twelf gives the user the opportunity to omit redundant information in dec- 
larations and reconstructs it from context. Unlike for functional languages, this requires recovering 
objects as well as types, so we refer to this phase as term reconstruction. 

There are criteria which guarantee that the term reconstruction problem is decidable, but unfor- 
tunately these criteria are either very complicated or still force much redundant information to be 

supplied. Therefore, the Twelf implementation employs a reconstruction algorithm which always 
terminates and gives one of three answers: 

1. yes, and here is the most general reconstruction; 

2. no, and here is the problem; or 

3. maybe. 

The last characterizes the situations where there is insufficient information to guarantee a most 
general solution to the term reconstruction problem. Because of the decidable nature of type- 
checking in LF, the user can always annotate the term further until it falls into one of the definitive 
categories. 

4.1 Implicit Quantifiers 

The model of term reconstruction employed by Twelf is straightforward, although it employs 
a relatively complex algorithm. The basic principle is a duality between quantifiers omitted in a 
constant declaration and implicit arguments where the constant is used. Recall some definitions in 
the signature denning natural deductions (see Section 3.6 [Sample Signature], page 11). 

o   :  type. 
and  :   o -> o -> o.       '/.infix right 10 and 
nd  :   o -> type. 
andi   :  nd A -> nd B -> nd (A and B) . 

The last declaration contains A and B as free variables. Type reconstruction infers most general 
types for the free variables in a constant declaration and adds implicit quantifiers. In the example 
above, A and B must both be of type o. The internal form of the constant thus has one of the 
following two forms. 
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andi   :   {A:o} {B:o> nd A -> nd B -> nd  (A and B). 
andi  :  {B:o} {A:o> nd A -> nd B -> nd  (A and B). 

These forms are printed during type reconstruction, so the user can examine if the result of 
reconstruction matches his expectations. 

4.2 Implicit Arguments 

The quantifiers on A and B in the declaration 

andi   :  nd A -> nd B -> nd  (A and B). 

were implicit. The corresponding arguments to andi are also implicit. In fact, since the order of 
the reconstructed quantifiers is arbitrary, we cannot know in which order to supply the arguments, 
so they must always be omitted. Thus a constant with n implicit quantifiers is supplied with n 
implicit arguments whereever it is seen. These implicit arguments are existential variables whose 
value may be determined from context by unification. 

For example, using also 

true   :   o. 
truei:  nd  (true). 

we have 

(andi truei truei)   :  nd  (true and true). 

During parsing, the expression (andi truei truei) is interpreted as 

(andi _ _ truei truei) 

where the two underscores stand for the implicit A and B arguments to andi. They are replaced by 
existential variables whose value will be determined during type reconstruction. We call them Al 
and A2 and reason as follows. 

I- andi   :   {A:o} {B:o} nd A -> nd B -> nd  (A and B) 
I- andi Al   :   {B:o> nd Al -> nd B -> nd  (Al and B) 
I- andi Al A2   :  nd Al -> nd A2 -> nd  (Al and A2) 
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At this point, we need a to infer the type of the application (andi Al A2) truei. This equates 
the actual type of the argument with the expected type of the argument. 

I- andi Al A2  :  nd Al -> nd A2 -> nd (Al and A2) 
|- truei   :  nd true 

I- andi Al A2 truei   :  nd A2 -> nd  (Al and A2) 
where nd true = nd Al 

The equation can be solved by instantiating Al to true and we continue: 

|- andi true A2 truei   :  nd A2 -> nd  (true and A2) 
|- truei  : nd true 

|- andi true A2 truei truei   :  nd (true and A2) 
where nd true = nd A2 

|- andi true true truei truei   :  nd (true and true) 

The last line is the expected result. In this way, term reconstruction can always be reduced to 
solving equations such that every solution to the set of equations leads to a valid typing and vice 
versa. 

4.3 Strict Occurrences 

Both for type reconstruction and the operational semantics, Twelf must solve equations between 
objects and types. Unfortunately, it is undecidable if a set of equations in the LF type theory has 
a solution. Worse yet, even if it has solutions, it may not have a most general solution. Therefore, 
Twelf postpones difficult equations as constraints and solves only those within the pattern fragment 
(see Miller 1991, Journal of Logic and Compilation and Pfenning 1991, Logical Frameworks). In 
this fragment, principal solutions always exist and can be computed efficiently. If constraints remain 
after term reconstruction, the constant declaration is rejected as ambiguous which indicates that 
the user must supply more type information. We illustrate this phenomenon and a typical solution 
in our natural deduction example. 

A central concept useful for understanding the finer details of type reconstruction is the notion 
of a strict occurrence of a free variable. We call a position in a term rigid if it is not in the argument 
of a free variable. We then call an occurrence of a free variable strict if the occurrence is in a rigid 
position and all its arguments (possibly none) are distinct bound variables. 
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If all free variable occurrences in all declarations in a signature are strict, then term recon- 
struction will always either fail or succeed with a principal solution, provided no further terms are 
omitted (that is, replaced by an underscore). 

If a free variable in a declaration of a constant c has no strict occurrence at all, then its type 
can almost never be inferred and most uses of c will lead to a constraint. 

If a free variable has strict and non-strict occurrences then in most cases term reconstruction will 
provide a definitive answer, but there is no guarantee. Mostly this is because most general answers 
simply do not exist, but sometimes because the algorithm generates, but cannot solve constraints 
with unique solutions. 

We use some advanced examples from the natural deduction signature to illustrate these concepts 
and ideas. In the declarations 

foralli   :   ({x:i} nd  (A x))  -> nd  (forall A), 
foralle   :  nd  (forall A)  -> {T:i} nd  (A T). 

all free variables have a strict occurrence.   However, if we had decided to leave T as an implicit 
argument, 

foralle  : nd (forall A)  -> nd (A T). 

then T has no strict occurrence. While this declaration is accepted as unambiguous (with A:i -> o 
and T:i), any future use of foralle most likely leads to constraints on T which cannot be solved. 

4.4 Strict Definitions 

Definitions are currently restricted so that each argument to the defined constant, may it be 
implicit or explicit, must have at least one strict occurrence in the right-hand side. For example, 
the definition of not in the signature for natural deduction (see Section 3.6 [Sample Signature], 
page 11) 

not   :  o -> o =   [A:o]  A imp false. 

is strict since the only argument A has a strict occurrence in A imp false. On the other hand, the 
definition 
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noti   :   ({p:o} nd A -> nd p) -> nd (not A) 
=  [D]  impi  ([u:nd A]  D false u). 

which gives a possible derived introduction rule for negation is not strict: the argument D has only 
one occurrence, and this occurrence is not strict since the argument false is not a variable bound 
in the body, but a constant. 

However, the definitions 

noti  :   (nd A -> nd false) -> nd (not A) 
=  [D:nd A -> nd false]   impi D. 

note  :  nd  (not A)  -> nd A -> nd false 
=   [D:nd (not A)]   [E:nd A]   impe D E. 

are both strict since arguments D and E both have strict occurrences. Type-checking these definitions 
requires that the definition of not A is expanded to A imp false. 

Note that free variables in the type and the right-hand side of a definition are shared. In the 
above example, A occurs both in the types and the right hand side and it should be thought of as 
the same A. With the implicit quantifiers and abstractions restored, the definitions above have the 
following form. 

noti :  {A:o}  (nd A -> nd false)  -> nd  (not A) 
= [A:o]   [D:nd A -> nd false]   impi D. 

note :  {A:o} nd  (not A)  -> nd A -> nd false 
= [A:o]   [D:nd  (not A)]   [E:nd A]   impe D E. 

4.5 Type Ascription 

In some circumstances it is useful to directly ascribe a type in order to disambiguate declarations. 
For example, the term oril truei has principal type nd (true or B) for a free variable B. If we 
want to constrain this to a derivation of nd (true or false) we can write orii truei : nd (true 
or false). 

Explicit type ascription sometimes helps when the source of a type error is particularly hard 
to discern: we can ascribe an expected type to a subterm, thus verifying our intuition about 
constituent terms in a declaration. 
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4.6 Error Messages 

When term reconstruction fails, Twelf issues an error message with the location of the declaration 
in which the problem occurred and the disagreement encountered. A typical message is 

examples/nd/nd.elf:37.35-37.41 Error:  Type mismatch 
Expected:  o 
Found: (i -> o)  -> o 
Expression clash 

which points to an error in the file 'examples/nd/nd.elf, line 37, characters 35 through 41 where 

an argument to a function was expected to have type o, but was found to have type (i -> o) -> o. 

If constraints remain, the error location is the whole declaration with the message 

filename:location Error:  Typing ambiguous — unresolved constraints 

The filename and location information can be used by Emacs (see Chapter 11 [Emacs Interface], 
page 55) to jump to the specified location in the given file for editing of the incorrect declaration 
for the constant c. The location has the form linel. column l-Hne2.column2 and represent Twelf's 
best guess as to the source of the error. Due to the propagation of non-trivial constraints the source 
of a type reconstruction failure can sometimes not be pinpointed very precisely. 
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5 Logic Programming 

Twelf gives an operational interpretation to signatures under the computation-as-proof-search 
paradigm. The fundamental idea is to fix a simple search strategy and then search for a derivation 
of a query according to this strategy. The result may be a substitution for the free variables in 
a query and a derivation, or explicit failure. It is also possible that the computation does not 
terminate. 

A query can be posed in three different ways: as a '/.query declaration, as a '/.solve declaration, 
or interactively, using a top-level invoked from ML with Twelf .top which prompts with '?-' (see 
Section 5.3 [Interactive Queries], page 20). 

query  ::= id  :  term      '/, X  :  A, X a free variable 
I  term '/, A 

bound  : : = nat '/, number of solutions 
I   * '/, unbounded number 

qdecl   : := bound bound query '/, expected solutions, try limit, query 

decl   ::= ... 
I   '/.query qdecl. '/, execute query 
I   '/.solve id  :  term.     '/, solve and name proof term 

In all of these cases, the free variables in a query are interpreted existentially, which is in contrast 
to constant declarations where free variables are interpreted universally. In particular, free variables 
might be instantiated during type reconstruction and during execution of the query. 

5.1  Query Declaration 

The query form 

'/.query expected try A. 

will try to solve the query A and verify that it gives the expected number of solutions, but it will 
never try to find more than indicated by try. It succeeds and prints a message, whose precise form 
depends on the value of Twelf .chatter if A has the expected number of solutions; otherwise it 
either fails with an error message or does not terminate, "/.query' has no other effect on the state 
of Twelf. Here are some examples. 
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'/.query 1 * A. '/, check that A has exactly one solution 
'/query 1 1 A. '/, check that A has at least one solution 
'/.query * 3 A. '/, A has infinitely many solutions, check 3 
'/.query * * A. '/, fails if A has finitely many solutions 
'/.query 1 0 A. '/, skip this query 

5.2 Solve Declaration 

The query form 

'/solve c   : A. 

will search for the first solution M of A and then define 

c   :  A = M. 

If there are any free variables remaining in M or A after search, they will be implicitly quantified 
in the new definition. This form of definition is particularly useful to compute and name inputs to 
future queries. An example of this feature from the file 'examples/nd/lam.elf can be found in 
Section 8.5 [Proof Realizations], page 42. 

5.3 Interactive Queries 

An interactive top-level can be invoked using the SML expression Twelf .top () ;. The top-level 
prompts with '?- ' and awaits the input of a query, terminated by a period '.' and a RET. 

After the query has been parsed, Twelf reconstructs implicit type information, issuing a warning 
if constraints remain. The result is executed as a query. At any point during the processing of a 
query the user may interrupt with C-c (that is, CTRL and c) to drop back into ML's interactive 
top-level. 

When Twelf has found a solution, it prints the answer substitution for all free variables in the 
query, including the proof term variable if one was given. It also notes if there are remaining 
equational constraints, but currently does not print them. 

The top-level then waits for input, which is interpreted as follows 
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y, Y, or ;     backtrack and search for another solution 

q or Q quit Twelf s top-level and return to ML 

n, N, or anything else 
return to prompt for another query 

5.4 Sample Trace 

As an example we consider lists of propositions and some simple operations on them, as they 
might be used when programming a theorem prover. 

list 
nil 
cons 

type, 
list. 
o -> list -> list. 

First, we want to write a program to append two lists to obtain their concatenation. This is 
expressed as a relation between the three lists, which in turn is implemented as a type family 

append     :   list -> list -> list -> type. 

appNil     :   append nil K K. 
appCons   :   append (cons X L)  K  (cons X M) 

<- append L K M. 

Here, we use the synonym A <- B for B -> A to improve readability. We say A if B. 

The first sample query concatenates the singleton lists containing true and false. We proceed 
as if we had loaded the appropriate files and started a top-level with Twelf .top () ;. 

?- append (cons true nil)   (cons false nil)  L. 

Here, L is a free existential variable. We search for an object M : append (cons true nil) (cons 
false nil) L, even though this object will not be shown in this form or query. Each constant 
declaration in the signature is tried in turn, unifying the head with the goal above. In this manner, 
we obtain the following sequence of goals and actions. Note that the intermediate forms and 
comments are not printed when this is run. They are added here to illustrate the behavior. 
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'/, original goal after parsing and type reconstruction 
?- append (cons true nil) (cons false nil) L. 
[try appNil: 

append nil Kl Kl 
= append (cons true nil) (cons false nil) L 

unification fails with constant clash: nil <> cons 
] 
[try appCons: 

append (cons XI LI) K2 (cons XI Ml) 
= append (cons true nil) (cons false nil) L 

unification succeeds with 
XI = true, LI = nil, K2 = cons false nil, L = cons true Ml 

] 
'/, subgoal 
?- append nil  (cons false nil) Ml. 
[try appNil: 

append nil K3 K3 
= append nil   (cons false nil)  Ml 

unification and subgoal succeeds with 
K3 = cons false nil,  Ml = cons false nil 

] 

At this point the overall goal succeeds and we read off the answer substitution for the only 
free variable in the query, namely L. It was first determined to be cons true Ml and then Ml was 
instantiated to cons false nil, leading to the instantiation 

L = cons true (cons false nil). 

If instead we pose the query 

?- X  :  append  (cons true nil)   (cons false nil)  L. 

we also obtain the proof term 

L = cons true (cons false nil); 
X = appCons appNil. 

As another example we consider a query with several solutions which are enumerated when 
we ask for further results. This time we do not trace the steps of the execution, but show the 
interaction verbatim. 
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?- append L K  (cons true  (cons false nil)). 
Solving... 
K = cons true (cons false nil); 
L = nil. 
More? y 
K = cons false nil; 
L = cons true nil. 
More? y 
K = nil; 
L = cons true (cons false nil). 
More? y 
Mo more solutions 

5.5 Operational Semantics 

The operational semantics of Twelf is a form of typed constraint logic programming. We will use 
standard terminology from this area. A type family which is used in a program or goal is called a 
predicate. A constant declaration in a signature which is available during search is called a clause. 
A clause typically has the form c : a Ml ... Mm <- Al <-...<- An, where a Ml ... Mm is the head 
of the clause and Al through An are the subgoals. A clause is used to reduce a goal to subgoals by 
a process called backchaining. Backchaining unifies the head of the clause with the current goal to 
generate subgoals. Next, we select one of the subgoals as a current goal and continue the search 
process. Actually, instead of unification (which is undecidable in LF), Twelf employs constraint 
simplification and carries along equational constraints in a normal form. 

A hypothesis which is introduced during search is a local assumption; a parameter is a local 
parameter. Parameters act like constants in unification, except that their occurrences might be 
restricted due to parameter dependency. 

Without going into a formal description, here are the central ideas of the operational semantics. 

Clause selection. 

The clauses are tried in the following order: from most recent to least recent local 
assumption, then from first to last clause in the global signature. 

Subgoal selection. 

Subgoals are solved from the inside out. For example, when a clause c : A <- B <- C. 
is applied to solve the goal ?- A. then the first subgoal is B and the second subgoal C. 
Truly dependent variables will only be subject to unification and never give rise to a 
subgoal. For example c : {X:b} a X <- a c is a clause with head a X, subgoal a c, and 
existential variable X. 



24 Twelf User's Guide 

Unification. 
An atomic goal is unified with the clause head using higher-order pattern unification. 
All equations outside this fragment are postponed and carried along as constraints. 

Local assumptions. 
A goal of the form ?- A -> B. introduces a local assumption A and then solves B un- 
der this assumption. To solve atomic goals, local assumptions are tried before global 
clauses, using the most recently made assumption first. Note that this is different from 
Prolog assert in that A is available only for solving B. 

Local parameters. 
Parameters are introduced into proof search by goals of the form ?- {x:A} B. which 
generates a new parameter a and then solves the result of substituting a for x in B. 
Parameters are also called universal variables since they are not subject to instantiation 
during unification. Local parameters will never be used as local assumptions during 
search. 

5.6 Sample Program 

As an example, we consider simple type inference for the pure lambda-calculus. An extension of 
this example to Mini-ML is given in the course notes Pfenning 1992. Computation and Deduction. 
The code below can be found in the file 'examples/guide/lam.elf. 
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'/, Simple types 
tp : type. 

arrow : tp -> tp -> tp. 

'/, Expressions 
exp : type. 

lam  : (exp -> exp) -> exp. 
app  : exp -> exp -> exp. 

'/, Type inference 
7, |- E : T (expression E has type T) 

of : exp -> tp -> type. 

tp_lam  :   of  (lam E)   (arrow Tl T2) 
<-  ({x:exp> 

of x Tl -> of   (E x)  T2) 

tp.app   :   of  (app El E2)  Tl 
<- of El  (arrow T2 Tl) 
<- of E2 T2. 

'/.name tp T. 

'/. Tl => T2 

'/name exp E. 

'/, lam x.  E 
*/.  (El E2) 

'/.name of P. 

'/.   I- lam x.  E   :  Tl => T2 
'/. if    x:Tl   |- E   :  T2. 

'/.   I- El E2   :  Tl 
'/. if     I- El   :  T2 => Tl 
'/. and   |- E2   :  T2. 

Again, we have used the notation A <- B to emphasize the interpretation of constant declarations 

as clauses. We now trace the query which infers the most general type of the identity function, 

represented as lam [x:exp] x. We indicate the scope of hypotheses which are introduced during 

search by indentation. 

'/, original query, T free 
?- of   (lam  [x:exp]  x)  T. 
'/, use tp_lam with E =  ([x:exp]  x) and T = arrow Tl T2 
'/, subgoal 
?- {x:exp} of x Tl -> of x T2. 
'/, introduce parameter e 
?- of e Tl -> of e T2. 
'/, introduce hypothesis labelled p 
p:of e Tl 
?- of e T2. 
'/, succeed by hypothesis p with Tl = T2 

At this point the query succeeds and prints the answer substitution. 

T = arrow Tl Tl. 
More? y 
No more solutions 
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We requested more solution by typing y, but there are no further possibilities. The free variable 
Tl in the answer substitution means that every instance of arrow Tl Tl provides a solution to the 
original query. In other words, lam [x:exp] x has type arrow Tl Tl for all types Tl. 

As a second example we verify that self-application is not well-typed in the simply-typed lambda- 
calculus. 

?- of   (lam  [x:exp]   app x x)  T. 
'/. use tp_lam with T = arrow Tl T2 
'/, subgoal 
?- {x:exp} of x Tl -> of  (app x x) T2. 
'/, introduce parameter e 
?- of e Tl -> of  (app e e)  T2. 
'/, introduce hypothesis p: of a Tl 
p:of e Tl 

?- of   (app e e)  T2. 
*/, use tp_app 
'/, first subgoal 
?- of e  (arrow T3 T2). 
'/, succeed by hypothesis p with Tl = arrow T3 T2 
'/, second subgoal 
?- of  e T3. 
'/, fail, since T3 = arrow T3 T2 has no solution 

At the point where the second subgoals fails we backtrack. However, all other alternatives fail 
immediately, since the clause head does not unify with the goal and the overall query fails. 
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6 Modes 

In most cases, the correctness of the algorithmic interpretation of a signature as a logic program 
depends on a restriction to queries of a certain form. Often, this is a restriction of some arguments 
to inputs which must be given as ground objects, that is, objects not containing any existential 
variables. In return, one often obtains outputs which will also be ground. In the logic programming 
terminology, the information about which arguments to a predicate should be considered input and 
output is called mode information. 

Twelf supports a simple system of modes. It checks explicit mode declarations by the pro- 
grammer against the signature and signals errors if the prescribed information flow is violated. 
Currently, queries are not checked against the mode declaration. 

Mode checking is useful to uncover certain types of errors which elude the type-checker. It 
can also be used to generate more efficient code, although the compiler currently does not take 
advantage of mode information. 

There are two forms of mode declarations: a short form which is adequate and appropriate most 
of the time, and a long form which is sometimes necessary to ascribe the right modes to implicit 
arguments 

mdecl   ::= smdecl        '/, short mode declaration 
I  fmdecl        */, full mode declaration 

decl 
'/mode mdecl. 

6.1  Short Mode Declaration 

There are two forms of mode declarations:   a short and a full form.   The short form is an 
abbreviation which is expanded into the full form when it is unambiguous. 
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mode   : := + '/, input 
1   * '/, unrestricted 
1   - '/, output 

mid  ::= mode id    '/, named mode identifier, one token 

smdecl   ::= id '/, type family a 
I   smdecl mid    */, argument mode 

Mode declarations for a predicate a must come before any clauses defining a. Note that the 
mode followed with the identifier must be one token, such as '+L' and not '+ L'. The short form is 

most convenient in typical situations. For example, we can declare that the append program (see 

Section 5.4 [Sample Trace], page 21) takes the first two arguments as input and produces the the 
third as output. 

append : list -> list -> list -> type, 
'/mode append +L +K -M. 

If we wanted to use append to split a list into two sublists, we would instead declare 

append : list -> list -> list -> type, 
'/.mode append -L -K +M. 

where the clauses appNil and appCons remain unchanged. 

In the lambda-calculus type checker (see Section 5.6 [Sample Program], page 24), the type must 
be an unrestricted argument. 

of   :  exp -> tp -> type. 
'/.mode of +E *T. 

If we declare it as an input argument, '/mode of +E +T, we obtain an error pointing to the first 
occurrence of T2 in the clause tp_app reproduced below. 

examples/nd/lam.elf:27.20-27.22 Error: 
Occurrence of variable T2 in input  (+)  argument not necessarily ground 

tp.app : of (app El E2) Tl 
<- of El (arrow T2 Tl) 
<- of E2 T2. 
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If we declare it as an output argument, '/mode of +E -T, we obtain an error pointing to the 
second occurrence of Tl in the clause tp_lam reproduced below. 

examples/nd/lam.elf:25.8-25.10 Error: 
Occurrence of variable Tl  in output  (-)  argument not necessarily ground 

tp_lam  :  of  (lam E)   (arrow Tl T2) 
<-  ({x:exp} 

of x Tl -> of  (E x)  T2). 

In general, for a mode declaration in short form the arguments are specified exactly as they 
would look in the program. This means one cannot specify the modes of implicit arguments which 
are filled in by term reconstruction. These modes are reconstructed as follows: each implicit 
argument which appears in the type of an input argument is considered input '+', those among the 
remaining which appear in an output argument are considered output '-', the rest are unrestricted. 
The mode declaration is echoed in full form, so the user can verify the correctness of the modes 
assigned to implicit arguments. If the inferred full mode declaration is incorrect, or if one wants 
to be explicit about modes, one should use full mode declarations (see Section 6.2 [Full Mode 
Declaration], page 29). 

6.2 Full Mode Declaration 

To specify modes for implicit arguments one must use the full form of mode declaration. A mode 
can be one of '+', '*', or '-' (see Section 6.1 [Short Mode Declaration], page 27). 

fmdecl   ::= mode {id  :  term} fmdecl 
I  mode {id} fmdecl 
I  term 

The term following the mode prefix in a full mode declaration must always have the form a xl 
... xn where xl through xn are variables declared in the mode prefix. As an example, we give an 
alternative specification of the append predicate. 

append  :  list -> list -> list -> type. 
'/.mode +{L:list} +{K:list} -{M:list} append L K M. 



30 Twelf User's Guide 

6.3 Mode Checking 

Mode checking for input, output, and unrestricted arguments examines each clause as it is 
encountered. The algorithm performs a kind of abstract interpretation of the clause, keeping track 
of a list of the existential variables for which it knows that they will be ground. 

1. We assume each existential variable with a strict occurrence (see Section 4.3 [Strict Occur- 
rences], page 15) in an input argument to the clause head to be ground. 

2. We traverse the subgoals in evaluation order (see Section 5.5 [Operational Semantics], page 23). 
For each subgoal we first verify that all input arguments will be ground, using the information 
about the existential variables collected so far. If this check succeeds we add all variables 

which have a strict occurrence in an output argument of the subgoal to the list of variables 
with known ground instantiations. 

3. After the last subgoal has been examined, we verify that the output arguments in the clause 
head are now also ground. 

Arguments whose mode is unrestricted are ignored: they do no need to be checked, and they 
do not contribute any information about the instantiations of existential variables. 
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7 Termination 

Besides checking types and modes, Twelf can also verify if a given type family, when interpreted 
as a logic program, always terminates on well-moded goals. In many cases this means that the 
program implements a decision procedure. Of course, in general termination is undecidable, so we 
only check a simple sufficient condition. 

Checking termination presupposes that the program is well-typed and guarantees termination 
only when the arguments involved in the termination order are ground. This will always be true 
for well-moded goals, since mode and termination declarations must be consistent. 

Termination is different from checking types and modes in that it is not checked incrementally as 
the signature is read. Instead, termination of a predicate is a global property of the program once 
it has been read. Thus termination declarations came after the predicate has been fully defined; 
further extensions of the predicate are not checked and may invalidate termination. 

The termination checker is rather rudimentary in that it only allows lexicographic and simul- 
taneous extensions of the subterm ordering. Moreover, it does not take into account if a result 
returned by a predicate is smaller than an input argument. Nonetheless, for the style of programs 
written in Twelf, the termination of many decision procedures can be verified. 

7.1 Termination Declaration 

The termination orders we construct are lexicographic or simultaneous extensions of the sub- 
term ordering explained in Section 7.2 [Subterm Ordering], page 33. The termination declaration 
associates the termination order with argument positions of predicates via call patterns. 

The case of mutually recursive predicates is particularly complex and requires mutual call pat- 
terns and mutual arguments. Their syntax is given below; they are explained in Section 7.5 [Mutual 
Recursion], page 36. 
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args   ::= 
I   id args '/, named argument 
I   _ args '/, anonymous argument 

callpat   : := id args '/, ml ... xn 

callpats  ::= 
I   (callpat)  callpats 

'/, mutual call patterns 

ids  ::= 
I   id ids '/, argument name 

marg  : := id '/, single argument 
I   ( ids ) '/, mutual arguments 

orders  ::= 
I  order orders '/, component order 

order   : : = marg '/, subterm order 
I   { orders }      '/. lexicographic order 
I   [ orders ]       '/, simultaneous order 

tdecl   ::= order callpats        */, termination declaration 

decl  ::= ... 
I   '/.terminates tdecl.  '/, termination declaration 

All identifiers in the order specification of a termination declaration must be upper case, must 
occur in the call patterns, and no variable may be repeated. Furthermore, all arguments partici- 
pating in the termination order must occur in the call patterns in input positions. 

The most frequent form of termination declaration is 

'/terminates Xi  (a XI  ... Xn) 

which expresses that predicate a terminates because recursive calls decrease the input argument Xi 
according to the subterm ordering (see Section 7.2 [Subterm Ordering], page 33). 

As an example, we consider a proof that simple type inference (see Section 5.6 [Sample Program], 
page 24) terminates. Recall the relevant program fragment (see 'examples/guide/lam.elf). 
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of   :  exp -> tp -> type. '/.name of P. 
'/.mode of +E *T. 

tp.lam  :  of  (lam E)   (arrow Tl T2) '/.   |- lam x.  E  :  Tl => T2 
<-  ({x:exp} % if    x:Tl   |- E  :  T2. 

of x Tl -> of   (E x)  T2). 

tp_app  :  of  (app El E2)  Tl '/.   |- El E2  :  Tl 
<- of El  (arrow T2 Tl) '/. if     |- El   :  T2 => Tl 
<- of E2 T2. '/. and   I - E2  :  T2. 

The typability of an expression is always reduced to the typability of its subexpressions. There- 

fore any call to the of predicate with a ground expression should terminate. In general, termination 

can only be checked for input arguments, and all calls must be well-moded (see Section 6.3 [Mode 

Checking], page 30). Twelf verifies termination with the declaration 

'/.terminates E  (of E T) . 

Here, E specifies the decreasing argument, namely the first argument of the typing judgment as 

expressed in the call pattern (of E T). 

A corresponding attempt to show that evaluation always terminates, 

'/.terminates E  (eval E V) . 

fails for the clause ev_app with the message 

examples/guide/lam.elf:1053-1068 Error: 
Termination violation: 
(El'  V2)   <  (app El E2) 

indicating that in a recursive call the term El' V2 could not be shown to be smaller than app El 

E2. In our example, of course, evaluation need not terminate for precisely this reason. 

7.2 Subterm Ordering 

On first-order terms, that is, terms not containing lambda-abstraction, the subterm ordering is 

familiar: M<N if M is a strict subterm of N, that is, M is a subterm N and M is different from 
N. 



34 Twelf User's Guide 

On higher-order terms, the relation is slightly more complicated because we must allow the 
substitution of parameters for bound variables without destroying the subterm relation. Consider, 
for example, the case of the typing rule 

of   :  exp -> tp -> type. '/.name of P. 
'/.mode of +E *T. 

tp_lam  :  of  (lam E)   (arrow Tl T2) */.   |- lam x.  E  :  Tl => T2 
<-  ({x:exp} */. if    x:Tl   |- E  :  T2. 

of x Tl -> of   (E x)  T2). 

from the signature for type inference (see Section 5.6 [Sample Program], page 24) in the file 
'example/guide/lam.elf. We must recognize that 

(E x)  <  (lam E) 

according to the subterm ordering. This is because E stands for a term [y:exp] E' and so E x has 
the same structure as E' except that y (a bound variable) has been replaced by x (a parameter). 
This kind of pattern arises frequently in Twelf programs. 

On the other hand, the restriction to parameter arguments of functions is critical. For example, 
the lax rule 

tp_applam  :  of  (app  (lam El)  E2) T2 
<- of  (El E2)  T2. 

which applies El to E2 which is not a parameter, is indeed not terminating. This can be seen from 
the query 

?- of  (app  (lam  [x:exp]  app x x)   (lam  [y:exp]  app y y))  T. 

The restriction of the arguments to parameters can be lifted when the type of the argument 
is not mutually recursive with the result type of the function. For example, the signature for 
natural deduction (see Section 3.6 [Sample Signature], page 11, contains no constructor which 
allows propositions to occur inside individual terms. Therefore 

(A T) <  (forall A) 
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where A : i -> o and T : i is an arbitrary term (not just a parameter). Intuitively, this is correct 
because the number of quantifiers and logical connectives is smaller on the left, since T cannot 
contain such quantifiers or connectives. 

This kind of precise analysis is important, for example, in the proof of cut elimination or the 
termination of polymorphic type reconstruction. 

7.3 Lexicographic Orders 

Lexicographic orders are specified as 

iOl  ... On} 

Using vi and wi for corresponding argument structures whose order is already defined, we 
compare them lexicographically as follows: 

{vl ... vn} < {wl ... wn}, if 

vl<wl, or 

vl = wl and v2<w2, or 

vl = wl, v2 = w2, ..., and vn<wn. 

A lexicographic order is needed, for example, to show termination of Ackermann's function, 
defined in 'examples/arith/arith.elf' with the termination declaration in 
'examples/arith/arith. thm'. 

7.4 Simultaneous Orders 

Simultaneous orders require that one of its elements decreases while all others remain the same. 
This is strictly weaker than a lexicographic ordering built from the same components. Technically 
speaking it is therefore is redundant for termination checking, since the corresponding lexicographic 
ordering could be used instead. However, for inductive theorem proving it is quite useful, since the 
search space for simultaneous induction is much smaller than for lexicographic induction. 

Simultaneous orders are specified as 
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101  ... On] 

Using vi and wi for corresponding argument structures whose order is already defined, we 
compare them simultaneously as follows: 

[vl ... vn] < [wl ... urn], if 

U1<K;1, V2< = w2, ..., and vn< = wn, or 

vl< = wl, v2<w2, ..., and vn< = wn, or 

vl< = wl, v2< = w2, ..., and vn<wn. 

A combination of simultaneous and lexicographic order is used, for example, in the admissibility 
of cut found in 'examples/cut-elim/int .thm', where either the cut formula A gets smaller, or if 
A stays the same, either the derivation of the left or right premise get smaller while the other stays 
the same. 

7.5 Mutual Recursion 

Mutually recursive predicates present a challenge to termination checking, since decreasing ar- 
guments might appear in different positions. Moreover, mutually recursive predicates a and a' 
might be prioritized so that when a calls a' all termination arguments remain the same, but when 
a' calls a the arguments are smaller according to the termination order. 

To handle the association of related argument in mutually recursive predicates, so-called mutual 
arguments can be specified in a termination order. They are given as 

(XI  ... Xn) 

The priority between predicates is indicated by the order of the call patterns. If we analyze call 
patterns 

(al argsl) 
(a2 args2) 

(an argsn) 

then ai may call aj for i<j with equal termination arguments, but calls of ai from aj must decrease 
the termination order. 
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Mutual arguments are used, for example, in the proofs of soundness (file 
'examples/lp-horn/uni-sound.thm') and completeness (file 
'examples/lp-horn/uni-complete.thm') of uniform derivations for Horn logic. 
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8 Theorem Prover 

Disclaimer: The theorem proving component of Twelf is in an even more experimental stage and 
currently under active development. There are two main restrictions which limit its utility: (1) it 
only support reasoning about closed objects, and (2) it cannot apply lemmas automatically. 

Nonetheless, it can prove a number of interesting examples automatically which illustrate our 
approach the meta-theorem proving which is described in Schuermann and Pfenning 1998, CADE. 
These examples include type preservation for Mini-ML, one direction of compiler correctness for 
different abstract machines, soundness and completeness for logic programming interpreters, and 
the deduction theorem for Hubert's formulation of propositional logic. These and other examples 
can be found in the example directories of the Twelf distribution (see Chapter 13 [Examples], 
page 67). 

A theorem in Twelf is, properly speaking, a meta-theorem: it expresses a property of objects 
constructed over a fixed LF signature. Theorems are stated in the meta-logic M2 whose quantifiers 
range over LF objects. In the simplest case, we may just be asserting the existence of an LF 
object of a given type. This only requires direct search for a proof term, using methods inspired by 
logic programming. More generally, we may claim and prove forall/exists statements which allow 
us to express meta-theorems which require structural induction, such as type preservation under 
evaluation in a simple functional language (see Section 5.6 [Sample Program], page 24). 

8.1 Theorem Declaration 

There are two forms of declarations related to the proving of theorems and meta-theorems. The 
first, '/.theorem, states a theorem as a meta-formula (mf orm) in the meta-logic M2 defined below. 
The second, '/.prove, gives a resource bound, a theorem, and an induction ordering and asks Twelf 
to search for a proof. 

Note that a well-typed '/.theorem declaration always succeeds, while the '/.prove declaration only 
succeeds if Twelf can find a proof. 
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dec  ::= {id:term> */, x : A 
I   {id} 7. x 

decs  ::= dec 
I  dec decs 

mform  : := forall* decs mform '/, implicit universal 
I  forall decs mform '/, universal 
I   exists decs mform '/ existential 
I  true '/, truth 

thdecl   : := id  : mform '/, theorem name a, spec 

pdecl  ::= nat order callpats '/, bound, induction order, theorems 

decl   ::= ... 
I   '/.theorem thdecl.    '/, theorem declaration 
I   '/prove pdecl. '/, prove declaration 

The prover only accepts quantifier alternations of the form forall* decs forall decs exists 
decs true. Note that the implicit quantifiers (which will be suppressed when printing the proof 
terms) must all be collected in front. 

The syntax and meaning of order and callpats are explained in Chapter 7 [Termination], 
page 31, since they are also critical notions in the simpler termination checker. 

8.2 Sample Theorems 

As a first example, we use the theorem prover to establish a simple theorem in first-order logic 
(namely that A implies A for any proposition ,4), using the signature for natural deduction (see 
Section 3.6 [Sample Signature], page 11). 

'/theorem 
trivl   :   exists {D:{A:o} nd  (A imp A)} 

true. 

'/prove 2 {}  (trivl D) . 

The empty termination ordering {} instructs Twelf not to use induction to prove the theorem. 
The declarations above succeed, and with the default setting of 3 for Twelf .chatter we see 
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'/.theorem trivl   :   ({A:o} nd (A imp A))  -> type. 
'/.prove 2 {}  (trivl D) . 
'/.mode -{D:{A:o} nd (A imp A)} trivl D. 
I  

/trivl/:     trivl   ([A:o]   impi  ([Dl:ndA]   Dl)). 
y,  

The line starting with '/.theorem shows the way the theorem will be realized as a logic program 
predicate, the line starting with /trivl/ gives the implementation, which, in this case, consists of 
just one line. 

The second example is the type preservation theorem for evaluation in the lambda-calculus. 
This is a continuation of the example in Section Section 5.6 [Sample Program], page 24 in the file 
•examples/guide/lam.elf. Type preservation states that if and expression E has type T and E 
evaluates to V, the V also has type T. This is expressed as the following '/.theorem declaration. 

'/.theorem 
tps : forall* {E:exp} {V:exp} {T:tp} 

forall {D:eval E V} {Prof E T} 
exists {Q:of V T} 
true. 

The proof proceeds by structural induction on D, the evaluation from E to V. Therefore we can 
search for the proof with the following declaration (where the size bound of 5 on proof term size is 
somewhat arbitrary). 

'/.prove 5 D  (tps D P Q). 

Twelf finds and displays the proof easily. The resulting program is installed in the global 
signature and can then be used to apply type preservation (see Section 8.5 [Proof Realizations], 
page 42). 

8.3 Proof Steps 

We expect the proof search component of Twelf to undergo major changes in the near future, 
so we only briefly review the current state. 

Proving proceeds using three main kinds of steps: 
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Filling Using iterative deepening, Twelf searches directly for objects to fill the existential quan- 
tifiers, given all the constants in the signature and the universally quantified variables 
in the theorem. The number of constructors in the answer substitution for each existen- 
tial quantifier is bounded by the size which is given as part of the '/.prove declaration, 
thus guaranteeing termination (in principle). 

Recursion Based on the termination ordering, Twelf appeals to the induction hypothesis on 
smaller arguments. If there are several ways to use the induction hypothesis, Twelf 
non-deterministically picks one which has not yet been used. Since there may be 
infinitely many different ways to apply the induction hypothesis, the parameter 
Twelf .Prover.maxRecurse bounds the number of recursion steps in each case of 
the proof. 

Splitting Based on the types of the universally quantified variables, Twelf distinguishes all pos- 
sible cases by considering all constructors in the signatures. It nevers splits a variable 
which appears as an index in an input argument, and if there are several possibilities 
it picks the one with fewest resulting cases. Splitting can go on indefinitely, so the 
paramater Twelf .Prover.maxSplit bounds the number of times a variable may be 

split. 

8.4 Search Strategies 

The basic proof steps of filling, recursion, and splitting are sequentialized in a simple strategy 
which never backtracks. First we attempt to fill all existential variables simultaneously. If that fails 
we recurse by trying to find new ways to appeal to the induction hypothesis. If this is not possible, 
we pick a variable to distinguish cases and then prove each subgoal in turn. If none of the steps 
are possible we fail. 

This behavior can be changed with the parameter Twelf .Prover.strategy which defaults to 
Twelf .Prover.FRS (which means Filling-Recursion-Splitting). When set to Twelf .Prover .RFS 
Twelf will first try recursion, then filling, followed by splitting. This is often faster, but fails in 
some cases where the default strategy succeeds. 

8.5 Proof Realizations 

Proofs of meta-theorems are realized as logic programs.   Such a logic program is a relational 
representation of the constructive proof and can be executed to generate witness terms for the 
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existentials from given instances of the universal quantifiers. As an example, we consider once 
more type preservation (see Section 8.2 [Sample Theorems], page 40). 

After the declarations, 

'/.theorem 
tps : forall* {E:exp} {V:exp} {T:tp} 

forall -CD:eval E V} {P:of E T} 
exists {Q:of V T} 
true. 

'/prove 5 D (tps D P Q) . 

Twelf answers 

/tps/tp_lam/ev_lam/: 
tps ev.lam (tp_lam ([x:exp]   [P2:of x Tl]  PI x P2)) 

(tp.lam  ([x:exp]   [P3:of x Tl]  PI x P3)). 

/tps/tp_app/ev_app/tp_lam/: 
tps  (ev.app Dl D2 D3)   (tp_app PI P2)  P6 

<- tps D3 P2  (tp.lam ([x:exp]   [P4:of x T2]  P3 x P4)) 
<- tps D2 PI P5 
<- tps Dl   (P3 E5 P5)  P6. 

which is the proof of type preservation expressed as a logic program with two clauses: one for 
evaluation of a lambda-abstraction, and one for application. Using the '/.solve declaration (see 
Section 5.2 [Solve Declaration], page 20) we can, for example, evaluate and type-check the identity 
applied to itself and then use type preservation to obtain a typing derivation for the resulting value. 

eO =  (app  (lam  [x]  x)   (lam  [y]  y)). 
'/.solve pO   :  of eO T. 
'/.solve dO   :  eval eO V. 
'/.solve tpsO  :  tps dO pO Q. 

Recall that '/.solve c : V executes the query V and defines the constant c to abbreviate the 
resulting proof term. 
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9 ML Interface 

The Twelf implementation defines a number of ML functions embedded in structures which can 
be called to load files, execute queries, and set environment parameters such as the verbosity level 
of the interaction. These functions and parameters are available in the Twelf structure. If you 
open the Twelf structure with 

open Twelf 

after compiling and loading Twelf, you do not have to type the 'Twelf.' to the functions shown 
below. 

Previous implementations of Elf offered a stand-alone command interpreter but this has not yet 
been ported. To exit Twelf and ML call Twelf .OS.exit ();. 

9.1 Configurations 

Groups of Twelf files are managed in configurations. A configuration is defined by a file, by 
convention called 'sources, cfg', which resides in the same directory as the Twelf source files. The 
configuration file must contain at most one Twelf source file per line, and the files must be listed in 
dependency order. A configuration config can then be defined from the file by the ML declaration 

val config = Twelf.Config.read "sources.cfg"; 

By convention, the filenames end in the extensions 

'.elf for constant declarations and definitions or mixed files, 

'. quy' for files which contain query declarations, 

'.thm' for files which contain '/.theorem and '/.proof declarations. 

File names may not contain whitespace. They are interpreted relative to the current working 
directory of ML, but resolved into absolute path names when the configuration file is read. To 
change the current working directory call 

Twelf.OS.getDir (); (* get working directory *) 
Twelf .OS. chDir "directory";   (* change working directory *) 
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As an example, we show how the Mini-ML configuration is defined and loaded, assuming your 

current working directory is the root directory of Twelf. 

val mini_ml = Twelf.Config.read "examples/mini-ml/sources.cfg"; 
Twelf.Config.load mini_ml; 

Note that the identifier bound to the configuration (mini_ml in this example), must be a legal 
ML identifier, usually consisting only of alphanumeric characters and underscores. The call to 

Twelf .Conf ig. load returns either Twelf .OK or Twelf .ABORT. It reads each file in turn, starting 
from an empty signature, printing the results of type reconstruction and search based on the value 

of the Twelf .chatter variable (see Section 9.3 [Environment Parameters], page 47). If another 

configuration or file has previously been read, all the declarations will first be deleted so that 
Twelf .Conf ig. load always starts from the same state. 

Loading a configuration will stop at the first error encountered, issue an appropriate message 
and return Twelf .ABORT. If there is an unexpected internal error (which indicates a bug in the 
Twelf implementation), it raises an uncaught exception instead and returns to the ML top-level. 

To explore the behavior of programs interactively, you may call the Twelf top-level with 

Twelf.top  (); 

which is explained in Section 5.3 [Interactive Queries], page 20. 

9.2 Loading Files 

Twelf also allows direct management of the signature by loading individual files. This is generally 
not recommended because successive declarations simply accumulate in the global signature which 
may lead to unexpected behavior. The relevant function calls are 

Twelf.reset (); 
Twelf.loadFile "file"; 

where Twelf .reset () resets the current global signature to be empty and Twelf .readFile "file" 
loads the given file whose name is interpreted relative to the current working directory. 

Caution: Reading a file twice will not replace the declarations of the first pass by the second, but 
simply add them to the current signature. If names are reused, old declarations will be shadowed, 
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but they are still in the global signature and might be used in the search for a solution to a query 

or in theorem proving, leading to unexpected behavior. When in doubt, use configurations (see 
Section 9.1 [Configurations], page 45) or call Twelf .reset (). 

9.3 Environment Parameters 

Various flags and parameters can be used to modify the behavior of Twelf and the messages it 
issues. They are given below with the assignment of the default value. 

Twelf.chatter := 3; 

Controls the detail of the information which is printed when signatures are read. 

0 Nothing. 

1 Just file names. 

2 File names and number of query solutions. 

3 Each declarations after type reconstruction. 

4 Debug information. 

5 More debug information. 

Twelf.doubleCheck := false; 

If true, each declaration is checked again for type correctness after type reconstruc- 
tion. This is expensive and useful only for your peace of mind, since type checking is 
significantly simpler than type reconstruction. 

Twelf.Print.implicit := false; 
If true, implicit arguments (normally elided) are printed. Sometimes this is useful to 
track particularly baffling errors. 

Twelf.Print.depth := NONE; 
If SOME(d) then terms deeper than level d are printed as "/,*/,'. 

Twelf.Print.length := NONE; 
If SOME(l) then argument lists longer than 1 are truncated with '...'. 

Twelf.Print.indent : = 3; 

Controls the amount of indentation for printing nested terms. 

Twelf.Print.width := 80; 
The value used to decide when to break lines during printing of terms. 

Twelf.Prover.strategy : = Twelf.Prover.FRS; 

Determines the strategy, where F=Filling, R=Recursion, and S=Splitting. Can also be 
Twelf.Prover.RFS. 
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Twelf.Prover.maxSplit := 2; 

The maximal number of generations of a variable introduced by splitting. Setting is to 
0 will prohibit proof by cases. 

Twelf.Prover.maxRecurse := 10; 

The maximal number of appeals to the induction hypothesis in any case during a proof. 

9.4 Timing Statistics 

Twelf has a few utilities to collect run-time statistics which are useful mainly for the developers. 
They are collected in the structure Timers. Timing information is cumulative in an ML session. 

Twelf.Timers.show (); 
Show the value of timers and reset them to zero. 

Twelf.Timers.reset (); 
Simply reset all timers to zero. 

Twelf.Timers.check (); 

Display the value of timers, but do not reset them. 

Caution: Normally, the various times are exclusive, except that the runtime includes the garbage 
collection time which is shown separately. However, there is a problem the time for printing the 
answer substitution to a query is charged both to Printing and Solving. 

9.5 Twelf Signature 

For reference, here is the ML signature TWELF of the Twelf structure which defines most functions 
and flags relevant to loading and executing Twelf programs. 

signature TWELF = 
sig 

structure Print : 
sig 

val implicit : bool ref (* false, print implicit args *) 
val depth : int option ref       (* NONE, limit print depth *) 
val length : int option ref     (* NONE, limit argument length *) 
val indent : int ref (* 3, indentation of subterms *) 
val width : int ref (* 80, line width *) 

end 
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structure Timers : 
sig 

val show : unit -> unit 
val reset : unit -> unit 
val check : unit -> unit 

end 

structure OS 
sig 

val chDir : 
val getDir 
val exit : 

end 

string -> unit 
: unit -> string 
unit -> unit 

structure Prover : 
sig 

datatype Strategy = RFS | FRS 
val strategy : Strategy ref 
val maxSplit : int ref 
val maxRecurse : int ref 

end 

val chatter : int ref 
val doubleCheck : bool ref 

datatype Status = OK I ABORT 

val reset : unit -> unit 
val loadFile : string -> Status 
val readDecl : unit -> Status 
val decl : string -> Status 

val top : unit -> unit 

(* show and reset timers *) 
(* reset timers *) 
(* display, but not no reset *) 

(* change working directory *) 
(* get working directory *) 
(* exit Twelf and ML *) 

(* F=Fill, R=Recurse, S=Split *) 
(* FRS, strategy used for '/.prove *) 
(* 2, bound on splitting *) 
(* 10, bound on recursion *) 

O 3, chatter level *) 
(* false, check after reconstruction *) 

(* return status *) 

(* reset global signature *) 
(* load file *) 
(* read declaration interactively *) 
(* print declaration of constant *) 

(* top-level for interactive queries *) 

structure Config : 
sig 
type config (* configuration *) 
val read : string -> config      (* read config file *) 
val load : config -> Status      (* reset and load configuration *) 
val define : string list -> config (* explicitly define configuration *) 

end 

val version : string 
end;  (* signature TWELF *) 

(* Twelf version *) 
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10 Twelf Server 

The Twelf server is a stand-alone command interpreter which provides the functionality of the 
Twelf structure in ML (see Chapter 9 [ML Interface], page 45), but allows no ML definitions. It is 
significantly smaller than Standard ML and is the recommended way to interact with Twelf except 
for developers. Its behavior regarding configurations is slightly different in that the server maintains 
a current configuration, rather than allowing the binding of names to configurations. Configuration 
are defined with the Conf ig.read command which takes a configuration filename as argument. 

In Emacs, the Twelf server typically runs in a process buffer called *twelf-server*. The user 
can select this buffer and directly type commands to the Twelf server. This style of interaction is 
inherited from the comint package for Emacs, but typically one works through advanced commands 
in Twelf mode (see Section 11.1 [Twelf Mode], page 55). 

The Twelf server prompts with •/,•/. OK •/,'/, or •/,'/, ABORT '/,•/. depending on the success of failure 
of the previous operation. It accepts commands and their arguments on one line, except that 
additional Twelf declarations which may be required are read separately, following the command 
line. Reading declarations can be forcibly terminated with the end-of-file token "/,.'. 

10.1 Server Types 

The server commands employ arguments of the following types. 

file The name of a file, relative to the current working directory. 

id A Twelf identifier 

strategy Either FRS or RFS (see Section 8.4 [Search Strategies], page 42) 

bool Either true or false 

nat A natural number (starting at 0) 

limit Either * (to indicate no limit) or a natural number 

10.2 Server Commands 

The Twelf server recognized the following commands. 
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set parameter value 

Set parameter to vaiue, where parameter is on of the following (explained in Section 9.3 
[Environment Parameters], page 47). 

chatter nat 

doubleCheck bool 

Print.implicit bool 

Print. depth limit 

Print. length limit 

Print.indent nat 

Print.width nat 

Prover.strategy strategy 

Prover.maxSplit nat 

Prover.maxRecurse nat 

get parameter 
Print the current value of parameter (see table above). 

Timers.show 
Print and reset timers. 

Timers.reset 

Reset timers. 

Timers.check 

Print, but do not reset timrs. 

OS.chDir ßle 
Change working directory to file. 

OS.getDir 
Print current working directory. 

OS.exit      Exit Twelf server. 

quit Quit Twelf server (same as exit). 

Config.read file 
Read current configuration from file. 

Config.load 
Load current configuration 

reset Reset global signature. 

loadFile file 
Load Twelf file file. 
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decl id       Show constant declaration for id. 

top Enter interactive query loop (see Section 5.3 [Interactive Queries], page 20) 
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11 Emacs Interface 

The Twelf mode for Emacs provides some functions and utilities for editing Twelf source and for 
interacting with an inferior Twelf server process which can load configurations, files, and individual 
declarations and track the source location of errors. It also provides an interface to the tags package 
which allows simple editing of groups of files, constant name completion, and locating of constant 
declarations within the files of a configuration. 

Note that in order to use the Emacs interface you need to include the line 

(load "directory/emacs/twelf-init.el") 

in your '.emacs' file, where directory is the Twelf root directory. 

11.1 Twelf Mode 

The Twelf mode in Emacs provides support for editing and indentation, syntax highlighting 
(including colors) (see Section 11.11 [Syntax Highlighting], page 62), and communication commands 
for interacting with a Twelf server running as an inferior process to Emacs. It defines a menu which 
is added to the menu bar, usually at the top of each Emacs frame. 

Many commands apply to the current declaration, which is the declaration in which we find 
the Emacs cursor (not the cursor of the window system). If the cursor is between declarations, 
the declaration after point is considered current. From the point of view of Emacs, single declara- 
tions never include consecutive blank lines, which provides some insulation against missing closing 
delimiters. 

Normally, Twelf mode is entered automatically when a Twelf source file is edited (see Sec- 
tion 11.12 [Emacs Initialization], page 62), but it can also be switched on or off directly with M-x 
twelf-mode. 

M-x twelf-mode 

Toggle Twelf mode, the major mode for editing Twelf code. 



56 Twelf User's Guide 

11.2 Editing Commands 

The editing commands in Twelf mode partially analyse the structure of the text at the cursor 
position as Twelf code and try to indent accordingly. This is not always perfect. 

TAB 
M-x twelf-indent-line 

Indent current line as Twelf code. This recognizes comments, matching delimiters, and 
standard infix operators. 

DEL 

M-x backward-delete-char-untabify 

Delete character backward, changing tabs into spaces. 

M-C-q 
M-x twelf-indent-decl 

Indent each line of the current declaration. 

M-x twelf-indent-region 

Indent each line of the region as Twelf code. 

11.3 Type Checking Commands 

The Twelf mode provides simple commands which cause the server to load or reload the current 
configuration, the file edited in the current buffer, or just the declaration at point. Each of these 
command can be preceded by a prefix argument (for example, C-u C-c C-c) which will select the 
Twelf server buffer after completion of the command. The Twelf server buffer can also be forced 
to be shown with the C-c C-u Emacs command. 

C-c C-c 
M-x twelf-save-check-config 

Save its modified buffers and then check the current Twelf configuration. With prefix 
argument also displays Twelf server buffer. If necessary, this will start up an Twelf 
server process. 

C-c C-s 

M-x twelf-save-check-file 

Save buffer and then check it by giving a command to the Twelf server. In Twelf Config 
minor mode, it reconfigures the server. With prefix argument also displays Twelf server 
buffer. 



Chapter 11: Emacs Interface 57 

C-c C-d 

M-x twelf-check-declaration 

Send the current declaration to the Twelf server process for checking.   With prefix 
argument also displays Twelf server buffer. 

C-c c 

M-x twelf-type-const 

Display the type of the constant before point. Note that the type of the constant will 
be 'absolute' rather than the type of the particular instance of the constant. 

C-c C-u 

M-x twelf-server-display 

Display Twelf server buffer, moving to the end of output. With prefix argument also 
selects the Twelf server buffer. 

11.4 Error Tracking 

Error messages by the Twelf server are flagged with the filename and an educated guess as to 
the source of the error (see Section 4.6 [Error Messages], page 18). These can be interpreted by 
Emacs to jump directly to the suspected site. 

Sometimes, the server buffer and the the server itself believe to have different working directories. 
In that case, error tracking may not be able to find the file, and an explicit call to OS.chDir or M-x 
cd in the server buffer may be required. 

C-c ' 

M-x twelf-next-error 

Find the next error by parsing the Twelf server or Twelf-SML buffer. Move the error 
message on the top line of the window; put the cursor at the beginning of the error 
source. If the error message specifies a range, the mark is placed at the end. 

C-c = 

M-x twelf-goto-error 

Go to the error reported on the current line or below. Also updates the error cursor to 
the current line. 
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11.5 Server State 

The server state consists of the current configuration and a number of parameters described in 
Chapter 10 [Twelf Server], page 51. The current configuration is often set implicitly, with the C-c 
C-c command in a configuration buffer, but it can also be set explicitly. 

C-c < 
M-x twelf-set 

Sets the Twelf parameter PARM to VALUE. When called interactively, prompts for 
parameter and value, supporting completion. 

C-c > 

M-x twelf-get 
Prints the value of the Twelf parameter PARM. When called interactively, promts for 
parameter, supporting completion. 

C-c C-i 
M-x twelf-server-interrupt 

Interrupt the Twelf server process. 

M-x twelf-server 
Start an Twelf server process in a buffer named *twelf-server*. Any previously existing 
process is deleted after confirmation. Optional argument PROGRAM defaults to the 
value of the variable twelf-server-program. This locally re-binds 'twelf-server-timeout' 
to 15 sees. 

M-x twelf-server—configure 

Initializes the Twelf server configuration from CONFIG-FILE. A configuration file is 
•   a list of relative file names in dependency order. Lines starting with % are treated as 

comments. Starts a Twelf servers if necessary. 

M-x twelf-reset 

Reset the global signature of Twelf maintained by the server. 

M-x twelf-server—quit 

Kill the Twelf server process. 

M-x twelf-server-restart 

Restarts server and re-initializes configuration. This is primarily useful during debug- 
ging of the Twelf server code or if the Twelf server is hopelessly wedged. 

M-x twelf-server-send-command 

Restarts server and re-initializes configuration. This is primarily useful during debug- 
ging of the Twelf server code or if the Twelf server is hopelessly wedged. 
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11.6 Info File 

The content of this file in Info format can be visited directly and does not need to be tied into 
the Info tree. See the documentation for the Emacs info package for more info 

C-c C-h 
M-x twelf-info 

Visit the Twelf User's Guide in info format in Emacs. With a prefix argument it 
prompts for the info file name, which defaults to the value of the twelf-info-f ile 
variable. 

11.7 Tags Files 

Tags files provide a convenient way to group files, such as Twelf configurations. See the docu- 
mentation for the Emacs etags package for more information. 

M-x twelf-tag 

Create tags file for current configuration. If the current configuration is sources.cfg, the 
tags file is TAGS. If current configuration is named FILE.cfg, tags file will be named 
FILE.tag Errors are displayed in the Twelf server buffer. 

M-. 
M-x find-tag TAG 

Selects the buffer that the tag is contained in and puts point at its definition. 

C-x 4 . 
M-x find-tag-other-window TAG 

Selects the buffer that TAG is contained in in another window and puts point at its 
definition. 

C-c q 
M-x tags-query-replace FROM TO 

Query-replace-regexp FROM with TO through all files listed in tags table. 

C-c s 

M-x tags-search REGEXP 
Search through all files listed in tags table for match for REGEXP. 

M-, 
M-x tags-loop-continue 

Continue last C-c s or C-c q command. 
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11.8 Twelf Timers 

The following commands obtain the runtime statistics of the the Twelf server. 

M-x twelf-timers-reset 

Reset the Twelf timers. 

M-x twelf-timers-show 

Show and reset the Twelf timers. 

M-x twelf-timers-check 

Show the Twelf timers without resetting them. 

11.9 Twelf-SML Mode 

There is some support for interacting with Twelf, even when it is run within ML, rather than as 
a stand-alone server. You can start an SML in which you intend to run Twelf with M-x twelf-sml; 
the buffer will then be in Twelf-SML mode. 

If you intend to send command to a buffer running Twelf in SML (rather than the Twelf server), 
you can switch to a minor mode 2Twelf-SML with M-x twelf-to-twelf-sml. 

M-x twelf-sml 
Run an inferior Twelf-SML process in a buffer *twelf-sml*. If there is a process already 
running in *twelf-sml*, just switch to that buffer. With argument, allows you to change 
the program which defaults to the value of twelf-sml-program. Runs the hooks from 
twelf-sml-mode-hook (after the comint-mode-hook is run). 

M-x twelf-to-twelf-sml-mode 
Toggles minor mode for sending queries to Twelf-SML instead of Twelf server. 

C-c C-e 
M-x twelf-sml-send-query 

Send the current declaration to the inferior Twelf-SML process as a query.   Prefix 
argument means switch-to-twelf-sml afterwards. 

C-c C-r 
M-x twelf-sml-send-region 

Send the current region to the inferior Twelf-SML process.   Prefix argument means 
switch-to-twelf-sml afterwards. 
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C-c RETURN 

M-x twelf-sml-send-newline 

Send a newline to the inferior Twelf-SML process. If a prefix argument is given, switches 
to Twelf-SML buffer afterwards. 

C-c ; 

M-x twelf-sml-send-semicolon 

Send a semi-colon to the inferior Twelf-SML process.   If a prefix argument is given, 
switched to Twelf-SML buffer afterwards. 

C-c d 

M-x twelf-sml-cd DIR 

Make DIR become the Twelf-SML process' buffer's default directory and furthermore 
issue an appropriate command to the inferior Twelf-SML process. 

M-x twelf-sml-quit 
Kill the Twelf-SML process. 

11.10 Emacs Variables 

A number of Emacs variables can be changed to customize the behavior of Twelf mode. The 
list below is not complete; please refer to the Emacs Lisp sources in emacs/twelf .el for additional 
information. 

twelf-indent 

Indent for Twelf expressions. 

twelf-server-program 

Default Twelf server program. 

twelf-info-file 

Default Twelf info file. 

twelf-mode-hook 

List of hook functions to run when switching to Twelf mode. 

twelf-server-mode-hook 

List of hook functions to run when switching to Twelf Server mode. 

twelf-sml-program 

Default Twelf-SML program. 

twelf-sml-mode-hook 

List of hook functions for Twelf-SML mode. 
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11.11 Syntax Highlighting 

Twelf also provides syntax highlighting, which helps make Elf code more readable. This high- 
lighting can use different colors and faces. Unfortunately, the necessary libraries are at present 
not standardized between XEmacs and FSF Emacs, which means that highlighting support is less 
general and less portable than the plain Twelf mode. 

At present, highlighting has not been extensively tested in various versions of Emacs, but the 
font-lock mode provided in 'emacs/twelf-f ont .el'seems to work at least in XEmacs version 19.16 
and FSF Emacs version 19.34. The alternative highlight mode provided in 'emacs/twelf-hilit' 

appears to work in FSF Emacs 19.34. 

Unlike other font-lock modes, Twelf's fontification is not 'electric' in that it does not fontify as 
one types. One has to explicitly issue a command to fontify the current Twelf declaration or current 
buffer, since single-line highlighting is too error-prone and multi-line immediate highlighting is not 

well supported in current versions of font lock mode. 

C-c C-l 
M-x twelf-font-fontify-decl 

Fontifies the current Twelf declaration. 

C-c 1 
M-x twelf-font-fontify-buffer 

Fontitifies the current buffer as Twelf code 

M-x twelf-font-unfontify 
Removes fontification from current buffer. 

11.12 Emacs Initialization 

If Twelf has been properly installed, you can use the Twelf's Emacs interface with the default 

settings simply by adding the line 

(load "directory/emacs/twelf-init .el") 

to your '.emacs' file, where directory is the Twelf root directory. In order to customize the 
behavior, you might copy the file 'emacs/twelf-init .el' or its contents and change it as appro- 

priate. 
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11.13 Command Summary 

  Editing Commands   
TAB twelf-indent-line 
DEL backward-delete-char-untabify 
M-C-q twelf-indent-decl 

  Type Checking   
C-c C-c    twelf-save-check-config 
C-c C-s     twelf-save-check-file 
C-c C-d    twelf-check-declaration 
C-c c      twelf-type-const 
C-c C-u    twelf-server-display 

  Error Tracking   
C-c '      twelf-next-error 
C-c =      twelf-goto-error 

  Syntax Highlighting   
C-c C-l     twelf-font-fontify-decl 
C-c 1      twelf-font-fontify-buffer 

  Server State   
C-c <      twelf-set 
C-c >      twelf-get 
C-c C-i     twelf-server-interrupt 
M-x twelf-server 
M-x twelf-server-configure 
M-x twelf-server-quit 
M-x twelf-server-restart 
M-x twelf-server-send-command 

  Info   
C-c C-h    twelf-info 

  Timers   
M-x twelf-timers-reset 
M-x twelf-timers-show 
M-x twelf-timers-check 

  Tags (standard Emacs etags package)   
M-x twelf-tag 
M-.        find-tag (standard binding) 
C-x 4 .     find-tag-other-window (standard binding) 
C-c q      tags-query-replace (Twelf mode binding) 
C-c s      tags-search (Twelf mode binding) 
M-,        tags-loop-continue (standard binding) 

visit-tags-table, list-tags, tags-apropos 
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  Communication with inferior Twelf-SML process  (not Twelf Server) — 
M-x twelf-sml 
C-c C-e     twelf-sml-send-query 
C-c C-r     twelf-sml-send-region 
C-c RET     twelf-sml-send-newline 
C-c ;       twelf-sml-send-semicolon 
C-c d      twelf-sml-cd 
M-x twelf-sml-quit 

  Variables   
twelf-indent 
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12 Installation 

At present, Twelf has been tested in SML of New Jersey (version 110 or higher) and MLWorks, 
both of which implement Standard ML (revised 1997) and the Standard ML Basis Library. The 
instructions below apply to a Unix system. For instructions for other architectures or updates please 
check the file 'INSTALL' at the Twelf home page and in the Twelf root directory after unpacking 
the distribution. 

On a Unix system you unpack the sources with 

gunzip twelf-1-2.tar.gz 
tar -xf twelf-1-2.tar 
cd twelf 
make 

This builds the Twelf server (see Chapter 10 [Twelf Server], page 51) for your current architecture 
and makes it accessible as 'bin/twelf-server'. It also installs the Twelf Emacs interface (see 
Chapter 11 [Emacs Interface], page 55), but you must add a line 

(load "directory/emacs/twelf-init.el") 

to your '.emacs' file, where directory is the root directory into which you installed Twelf. Note 
that the Twelf installation cannot be moved after it has been compiled with make, since absolute 
pathnames are built into the executable scripts. 

Note that the Twelf server presently only works with Standard ML of New Jersey, since interrupt 
handling is implementation specific. 

If you would like to use Twelf as a structure in SML, you can then call 

make twelf-sml 

which creates 'bin/twelf-sml' for the Twelf-SML mode (see Section 11.9 [Twelf-SML Mode], 
page 60). Calling make clean will remove temporary files created by the SML compiler, but not 
the executable file. 

SML of New Jersey (free, version 110 or higher) 

See http://cm.bell-labs.com/cm/cs/what/smlnj/index.html 
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MLWorks (commercial) 
See http://www.harlequin.com/products/ads/ml/ml.html 

In MLWorks, you can presently only directly load the Twelf sources, using the file 
'load.sml'. 

ml works-basis    start MLWorks with basis library in Twelf root directory 
use  "load.sml";    compile and load Twelf 
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13 Examples 

We give here only a brief reference to the examples in the 'examples/' subdirectory of the 
distribution. Each example comes in a separate subdirectory whose name is listed below. 

'arith'        Associativity and commutative of unary addition. 

'ccc' Cartesian-closed categories (currently incomplete). 

'church-rosser' 

The Church-Rosser theorem for untyped lambda-calculus. 

'compile'    Various compilers starting from Mini-ML. 

'cut-elim' 

Cut elimination for intuitionistic and classical logic. 

'fol' Simple theorems in first-order logic. 

'guide' Examples from Users' Guide. 

'lp' Logic programming, uniform derivations. 

'lp-horn' Horn fragment of logic programming. 

'mini-ml' Mini-ML, type preservation and related theorems. 

'polylam' Polymorphic lambda-calculus. 

'prop-calc' 

Natural deduction and Hubert propositional calculus 

'units'        Mini-ML extended with units (currently incomplete). 

In each directory or subdirectory you can find a file 'sources. cf g' which defines the standard 
configuration, usually just the basic theory. The 'test.cfg' which also defines an extended config- 
uration with some test queries and theorems. Most examples also have a 'README' file with a brief 
explanation and pointer to the literature. 
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